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Abstract-It is assumed that a mode III crack moves under initially steady-state conditions. At a certain time
instant material inhomogenities induce non-uniform crack growth. The stress-intensity factor during a short
time interval after the first velocity change is calculated. This is achieved by appropriate superpositioning of
known results. Agoverning equation for the non-steady growth is derived. As an example the clamped infinite
strip is analysed. Finally, possible applications of the given results are discussed.

INTRODUCTION

The growing interest in crack arrest problems has stimulated the research of finding analytical
and numerical solutions to crack propagation problems. As the arrest process is a case where the
crack propagation velocity changes its magnitude more or less rapidly, it is evident that solutions
for non-uniform crack motion are needed. Particular classes of such problems have been solved
analytically. In these cases it is assumed that the crack moves in an unbounded medium. These
solutions can be applied also to finite bodies during the time-interval before interaction with the
boundaries or the other tip occurs. This limits the range of validity to a rather short time after the
beginning of crack growth. For mode III-problems, the first solution was given by Kostrov[l].
Further extensions have been made by Eshelby [2] among others [3,4]. The corresponding
mode-I problems were solved by Freund[5-8]. A review of methods for solving these problems
has recently been published [15].

Obviously the applicability of such solutions to crack arrest problems is limited, since in
general a substantial amount of crack growth has taken place before the arrest. An approximation
which often is fairly good, is that the crack has propagated steadily before the arrest. Recently,
some idealized problems of this kind have been considered [9, 10]. Here it is assumed that the
crack initially moves under steady-state conditions and then stops momentaneously. In [9] the
short time behaviour of mode-I cases was treated. A particular mode III problem was solved in
[10], where also the long-time behaviour was considered. In these papers the conditions for a
momentaneous arrest of the assumed kind were discussed.

It is clear that in many cases the assumption of a momentaneous arrest is too crude. We will
therefore in the present paper consider an extension of the mode III results to the case where an
arbitrary growth after the steady phase is allowed. An analytical procedure, however, does only
seem possible for the short-time behaviour.

STATEMENT OF THE PROBLEM

Consider a crack propagating under steady mode III conditions along the x-axis of a fixed
(x, y)-coordinate system (Fig. la). In this figure, displacements and stresses have for clarity been
drawn as for the mode I case. Let w denote the only nonvanishing displacement component. On
the outer boundaries some conditions are specified. Cut the body along the x-axis and consider
the upper half. Introduce a moving coordinate system attached to the crack tip (71, g). Along the
crack plane we then have, if the propagation velocity is V.

On y =0: 'Ty, =0 X - Vt = 71 <0 (1)

'Ty, = 'T'(Tj) X - Vt = 71 > 0 (2)

w = w'(Tj) x - Vt = 71 <0 (3)

w =0 x-Vt=Tj>O. (4)

It is assumed that the solution to this problem (A) is known and in particular the functions 'T' (71)
and w'(Tj).
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Fig. L Illustration of the different boundary value problems.

Suppose now that at t = 0, the crack velocity changes in some arbitrary way. The object of the
present analysis is to determine the stress-intensity factor K(t) after the first velocity change.
The validity of the solution will be limited to the interval before the time at which a disturbance
emitted from the tip at t = 0 has travelled to the boundary and back to the tip (td ).

FORMAL SOLUTION

Let us first consider the case when the tip stops momentaneously at t = 0 (problem B). We
then obtain some time-dependent stress-distribution, say Tyz = T"(X, t) in front of the tip in the
crack plane (Fig. Ib). Of interest is the stress-intensity factor K"(t). This can be found in [10].
After a simple change of integration variable we obtain

(
V)1/2(2)112 (-V' a s

K"(t)=Ill+c -; J,,~o(Vt+7JflI2a~d7J' (5)

11 is the shear modulus and C the velocity of the equivoluminal waves.
Consider now the following boundary-value problem (C) for a half-space with radiation

conditions at infinity (Fig. lc). The medium is assumed to be at rest for t :s; O.

Tyz = -H(X)TS'(X, t)

W= 0 X> a(t).

x < a(t) (6)

(7)

a(t) is an arbitrary time-function and H denotes the unit step function.
It is obvious that if we superpose problem (C) onto problem (B), we will obtain the solution to

the desired problem. The stresses for the two problems on the segment x < a(t) cancel each other
and the displacement condition for x> a(t) is satisfied. The latter problem (C) is however
precisely the one considered by Kostrov[l]. In Kostrov's paper an explicit expression for the
stress-intensity factor is given. Inserting the particular stress-distribution (6) we obtain.

K(t) = (1- ti(t»)'/2(l)1/2 (aCt) _ T"(X, t - a(t) +~)(a(t) - Xfl/2 dx (8)
C rr Jx~a(t)-Cl C C

if K is defined as

K = lim [2rr(x - a(t))]1/2Tyz (x, t).
x-+a(t)

(9)
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Equation (8) formally solves our problem for t < td. If r"(x, t) was known, the integral could be
solved. We will here take a different route, but a necessary result for the foUowing analysis can be
deduced from (8). The integral depends only of the current position a(t) of the tip and on r"(x, t).
In other words, K(t) does in no way depend on how the tip has reached its position at a certain
time-instant. We will now distinguish between the two cases a(t) < Vt and a(t) > Vt at aparticular
time instant t. These cases will be treated somewhat differently.

SOLUTION FOR THE CASE a(I)< VI

As discussed above, the integral in (8) will have the same value for any growth history having
the property that the tip's position is x = a(t) at the considered time-instant. Let us therefore
construct a particular growth history with this property (Fig. 2).

(10)

(11)

This is just the case when the crack continues to move steadily and instead stops at the time to.
K(t) is then given by (5) with t replaced by the time-difference t - to. We then immediately obtain
K for any other growth history by simply multiplying with the velocity-dependent factor of (8).

(
V)1/2( .(t»)"2(2)1/2L4

(1) a 'K(t) =/-L 1+- l-!!- - (-~(t)+ 1JrI/2~d1J
C C 7T ..,~o a1J

with
~(t)=a(t)-Vt.

SOLUTION FOR THE CASE a(I» VI

Consider another boundary-value problem (D) for the half-space (Fig. ld).

(12)

(13)

'Tyz = - H(x - Vt)'T'(x - Vt)

w =0

O<x<a(t)

a(t) < x.

Superpose problem (D) onto the steady-state problem (A). In analogy with the earlier discussion,
this solves the desired problem. Insertion of (14) into (8) and making a simple transformation of
integration variable lead to eqn (16).

(
V)-112( .(t»)1/2(2 )1/2 r4

(.)
K(t)= I-C l-aC -; J..,_o(~(t)-1JrI/2'T'(1J)d1J

~(t) is defined by (13).

(16)
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Fig. 2. Actual and comparison crack growth history, a(t) < V(I).
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The solution of the title problem is thus given by eqns (12) and (16). The integrals in these
equations depend only of how far the crack has extended relative to its position had it continued
to move steadily. For any particular problem these integrals can always be evaluated at least by
aid of numerical methods. We can thus summarize the results as

K(t) = (1 -ag))112!(il(t); V) (17)

where the function! can be calculated once and for all for a specific problem.
In the particular case when il(t) tends to zero, only the singular parts of w' and T' give

contributions to the integrals. One has for the singular parts of these functions (see [11]).

(18)

(19)

K D is here the stress-intensity factor for the steadily moving crack. Insertion of these
expressions into (12) and (16) yields as it should the common result

(20)

APPLICATION TO ARREST PROBLEMS

It has in the treatment been assumed that the body is homogenous as what regards the elastic
properties. Velocity changes of the kind assumed here can thus only occur if the fracture
properties of the material vary. Suppose e.g. that the body is composed of two regions with
different fracture properties, say Kcl(a) and K/'(a) in regions I and II respectively.

Let the crack move steadily with velocity V in region I. As the tip hits region II a sudden
velocity change will occur if Kc"(V) is different from K/(V).

During the steady phase of motion K D obviously must equal KcI(V). Applying eqn (19) we
thus obtain

K/(V)(C - Vr l12
= K/'(a(+O»(C - a(+0)r I12

• (21)

From this equation a(+0) can be determined if the remaining quantities are known. The equation
for the subsequent motion can with aid of (17) be written

(22)

This non-linear, first order equation has in general to be solved numerically with the initial
condition given by (21). This can be accomplished by standard numerical methods.

A practical way of crack arrest design is to insert bands of tougher material. The question is in
that case if the crack stops before reaching the parent material again. A solution of (22) which
gives zero velocity at some time-instant before td , does not necessarily mean that the crack
ceases to move completely. As was observed in [10], K may oscillate after a stopping and in some
cases reinitiation of growth may occur.

AN EXAMPLE

Consider the same example as in [10], i.e. a clamped infinite strip bisected by a running
semi-infinite crack (Fig. 3). The boundaries y = ± h are displaced an amount ± Wo respectively.

The steady-state problem was solved in [12] and [13]. The expressions for the necessary
quantities are given by

(23)

(24)
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Fig. 3. The strip problem.

where

Furthermore we have from [13]
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(26)

K.. is the static stress-intensity factor.
Insertion of these expressions into eqns (12) and (16) gives the stress-intensity factor K(t).

where

K(t) = (C -ci(t))1/2KD. (A(t»)
C - V g f3h (27)

(28)

This integral was calculated numerically and the resulting values are shown in Fig. 4. Using this
graph and eqn (27), K(t) can be found for any motion. In Fig. 5 some examples of growth
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Fig. 4. The function g(~/f3h).
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histories are shown together with the resulting values of K(t). The steady initial velocity is in all
cases 0.5 C. The curves have been drawn up to the time td , which is given by the following
relation.

(29)

For case 1, K(t) first decreases discontinuously and then increases almost linearly to
approximately the steady-state value of the new velocity. In case 2 the same pattern is observed,
but the initial decrease is in this case continuous. The other two cases have a similar structure
but with the sign of the changes in K reversed.

DISCUSSION

The strict applicability of the given results is limited. We have firstly that the analysis is valid
only for mode III problems. It is in the authors opinion more than likely that a similar analysis can
be carried out for mode I problems, judging from the in other cases found analogues between
elastic mode I and III problems. Presumably the analysis will be considerably more complicated
(compare e.g. [1-4] to [5-8]).

The second limitation is that a steady state growth must precede the velocity changes. The
third is the mentioned restriction on the time range. It does not seem likely that general analytical
methods can be developed so as to remove these limitations. For particular problems progress
can possibly be made.

One relation that may have a more general applicability is eqn (20). Since only the singular
field contributes and this is same whether the crack moves uniformly or not [14], it is possible that
this relation holds for a discontinuous velocity change under any conditions. K D should then be
identified with the momentaneous value of K before the velocity jump. This simple reasoning is
however not a proof, but the matter seems to merit a further investigation.

In view of the discussed limitations it is unlikely that the derived results are of much practical
value for crack arrest design. On the contrary, they can be extremely valuable in experimental
work where the experiment can be constructed so as to at least approximately fulfill the
assumptions. That is, it is possible to evaluate a Kc vs a relation by using the strip specimen.

Solutions of the present type can also be used as test examples for numerical analysis. It is to
be expected that the application of FEM to dynamic crack problems will be increasingly popular.
It is then necessary to have reference solutions in order to check the numerical methods.
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